			96	1	P1 a strategy to start to solve the problem eg $18 \div (7-4)$ (=6)
1			50		
					P1 for completing the process of solution eg "6" \times (4 + 5 + 7)
					A1 cao
	1	'			
2	6:2:1				M1 for correct interpretation of any one statement eg. 3 : 1; 1 : 0.5
					A1 accept any equivalent ratio eg. 3 : 1 : 0.5
	- 1				2 4 12 2
3		$\frac{1}{3}$			live the problem e.g. $\frac{3}{10} \times \frac{4}{9} \left(= \frac{12}{90} = \frac{2}{15} \right)$ OR finds the number of white circles for their
			ch	hosen numb	per OR for 9 : 21 (or a multiple of 9 : 21)
			P1 se	econd step o	of the process e.g. $\frac{7}{10} \times \frac{2}{7} (= \frac{14}{70} = \frac{2}{10} = \frac{1}{5})$ OR finds the number of black circles for
					number OR for a multiple of 2:5 where the ratio parts sum to "21"
			P1 fo	or complete	process e.g. " $\frac{12}{15}$ " " $\frac{1}{5}$ " (= $\frac{4}{30}$ + $\frac{6}{30}$) OR finds the total number of circles for their
			cl	hosen numb	per OR for 3 ratios that could be used to solve the problem
			eg	g 9 : 21 wit	h 4:5 with 6:15
			A1 fo	or $\frac{1}{3}$ oe	
-		37.	7.1	6	
4		Yes (supported)	P1 P1		ess to work out the total number of children, e.g. 117×4 (= 468)) for process to work out total number of adults or the total number of people, e.g.
		(supported)		"468" ×	5 ÷ 2 (= 1170) or "468" × 7÷ 2 (= 1638)
			A1 P1		
				e.g. "468"	"+"1170" × 100 (= 63) or for a process to work out 60% of 2600 (= 1560)
			C1		rrect conclusion supported by correct figures e.g. 63% or 1560 and 1638
				OR	
			P1	for a pro	ocess to work out 60% of 2600, eg. $\frac{60}{100} \times 2600$ (= 1560)
			P1) for process to work out this total number of children, 60" × 2 ÷ 7 (= 445(.7))
			A1 P1	for 445(
			C1	for a con	appropriate accept rounded or truncated values
				[where	appropriate accept founded of funcated values]
	1				
_		3:4:1	1 P		tes a start e.g. by using multipliers e.g. $1 + 5 = 6$ and $7 + 11 = 18$ and $6 \times 3 = 18$ or
5				AB:1	$BD = 3.15$ or $x=3y$ (appropriate x and y shown) or $\frac{1}{6} = \frac{3}{18}$ uplete process to find ratios e.g. $(7+11) \div (1+5) = 3$ and
				1 × '	plete process to find ratios e.g. $(7 + 11) \div (1 + 5) = 3$ and $(3) \cdot (7 - (3) \cdot (3) \cdot (1 + 5)) = 3$
			A	A1 oe	
					<u> </u>
6		14:21:42	P1		out of 3 expressions in one letter eg from x , $x+7$ $2x+14$ or see a set of numbers ow interpretation of the relationships, eg 10, 17, 34
			P1	(dep)	for sum of their 3 expressions =77 eg $x + x+7+2x+14=77$ oe or 2 systematic ct trials including addition
			P1		correct process to isolate their term in x or x=14
			A1	for ra	tio 14:21:42 oe
		$y = \frac{x(k+1)}{k-1}$	M1	v+v	$=k(y-x)$ or $\frac{y+x}{y-x}=k$ oe
7	ky-y=x+kx	$y = \frac{1}{k-1}$	M1		$-k(y-x) \text{ or } \frac{1}{y-x} - k \text{ oe}$ solating x and y on opposite sides eg $ky - y = x + kx$
	y(k-1)=x(1+k)		IVII	1011	somming a directly our oppressive stoces cg. ny - y - x + nx
			A1	Com	pleting correct algebraic reasoning to reach conclusion

8	1/11	P1	for starting the process, eg by writing down a correct ratio or using a given number of cubes for one relationship, eg 2B 1Y or B:Y = 2:1 or 4G 1B or G:B = 4:1 or 8G, 1Y or G:Y = 8:1 oe or yellow = 2, blue = 4, or states 2:1:8 oe in any order (can be algebraic)
		P1	for complete process to find possible number of each colour or equivalent ratio, eg 8G 2B 1Y or G:B:Y = 8:2:1 oe or yellow = 2, blue = 4, green = 16 oe (can be algebraic)
		A1	$\frac{1}{11}$ oe

9	216	P1	for process to work with ratio	
9			eg 72 ÷ (3 + 4 + 5) (= 6) or 72 ÷ 12 (= 6)	
		P1	for process to find length of base or height of triangle	
			eg 3 × "6" (= 18) or 4 × "6" (= 24)	
			OR process to find area scale factor	
			eg "6" × "6" (= 36)	
		P1	complete process to find the area of the triangle	
			eg ½ × "18" × "24" or ½ × 3 × 4 × "6" ²	
		A1	cao	

10	0.12	P1	for process to start eg $(1 - 0.2) \div (3 + 17)$ (= 0.04)	Just $1 - 0.2 = 0.8$ is not sufficient for P1
			or (3 + 17) ÷ (1 – 0.2) oe (= 25)	
			or (100 – 20) ÷ (3 + 17) (= 4)	
			or 3 × 4 (= 12) and 17× 4 (= 68)	May be seen in a ratio
		P1	full process to find the required probability	
			eg 3 × "0.04" or $\frac{3}{20}$ × (1 – 0.2) oe or 3 ÷ "25" or 3 × "4" ÷ 100	
		A1	oe	0.12 using incorrect probability notation gets P2

11	3:4	P1	starts process eg $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ oe	
		P1	for process to find $\overrightarrow{OM} = \mathbf{a} + \frac{1}{2}$ " $(\mathbf{b} - \mathbf{a})$ "oe $(=\frac{1}{2}(\mathbf{a} + \mathbf{b}))$	
		P1	for process to find $\overrightarrow{AP} = -\mathbf{a} + \frac{3}{5}$ " $(\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b})$ " oe	
			or (indep) for $\overrightarrow{AN} = -\mathbf{a} + \text{``k''}\mathbf{b}$	
		P1	process to find "k" using $\overrightarrow{AN} = -\mathbf{a} + "k"\mathbf{b}$ as a multiple of \overrightarrow{AP}	
		A1	cao	
			ALTERNATIVE	
		P1	for producing OM to C such that AC is parallel to OB	Formal geometric reasoning relating to
		P1	for process to show that $MC = OM$, using congruent triangles ACM and BOM	congruent and similar triangles is not
			for process to find PC as a multiple of $OM/5$ (= $7OM/5$)	required
		P1	for process to find ON as a multiple of $AC(OB)$ (= $3OB/7$) using similar	
		P1	triangles ACP and NOP	
		A1	cao	

12	96	P1	for process to find the ratio of the number of pens of each colour sold, eg $2 \times 7: 5 \times 3: 6 \times 4 \pmod{1}$	Does not have to be seen as a ratio but all three needed
		P1	for process to find the proportion of green pens sold, eg $\frac{212}{"14"+"15"+"24"}$ or $\frac{"24"}{"14"+"15"+"24"}$	
		P1	for a complete process to find the number of green pens sold, eg $\frac{212}{\text{"I.4"+I.5"+"24"}} \times \text{"24"}$ or $\frac{\text{"24"}}{\text{"I.4"+I.5"+"24"}} \times 212$	P3 can be implied by the values 56, 60 and 96
		A1	cao	

13	168	P1 P1 P1 A1	for working with ratio to find the amount for C or D eg 1.5×2 (=3) or (A, B, C, D =) 2, 7, 3, 3 oe OR for suitable expressions linking A with C or D, eg. A = x , C = $1.5x$ for "2 + 3 + 3 + 7" (=15) OR adds 4 suitable expressions, eg. " x + $3.5x$ + $1.5x$ + $1.5x$ " (= $7.5x$) for a complete process to find the amount of money eg 360 + " $1.5x$ " 7 OR 360 + " 7.5 " $8.5x$ +	
14 (a) (b)	100 : 81 6 : 5	M1 A1 P1 A1	for a scale factor of 0.9 oe used; OR for 10:9 oe OR 81:100 oe OR 81:100 oe OR 81% for 100:81 oe for 1.44 oe used as the scale factor or 1.2 oe OR for 144:100 oe or √144:√100 oe OR 5:6 oe for 6:5 oe	eg. 1 : 0.81, accept 1.23(4) : 1 eg. 1.2 : 1, accept 1 : 0.83(3)

_					
15	(a)	Explanation	C1	For stating the LCM of (4+7) and (5+3) is 88 or there is no smaller multiple of 8 and 11 (than 88)	
	(b)	23	P1	for using a scale factor appropriately eg 4×8 (=32) or 3×11 (=33) or 7×8 (=56) or 5×11 (=55) or for writing a pair of suitable fractions, eg $\frac{7}{11}$ and $\frac{3}{8}$ or $\frac{4}{11}$ and $\frac{5}{8}$ or $\frac{3}{8}$ and $\frac{4}{11}$	May be seen in a two-way table or probability tree
			P1	for finding the number of large cubes and red cubes or small and yellow or small and red eg 7×8 (=56) and 3×11 (=33) or 4×8 (=32) and 5×11 (=55) or 4×8 (=32) and 3×11 (=33) OR a suitable fractional equation, eg $\frac{7}{11} - x = \frac{3}{8}$ or $\frac{5}{8} - x = \frac{4}{11}$	May be seen in a two-way table or probability tree
				or $x = 1 - \frac{3}{8} - \frac{4}{11}$ OR a suitable pair of probabilities with a common denominator, eg $\frac{56}{88}$ and $\frac{33}{88}$ or $\frac{32}{88}$ and $\frac{55}{88}$ or $\frac{33}{88}$ and $\frac{32}{88}$	23/88 scores P2A0
			A1	cao	

16	2	P1	for a process to find the number of men, eg. $(60 \div 2) \div 3 (= 10)$	
10	(supported)	P1	for a process to find the number of children, eg. 60 – "30" – "10" (= 20)	60 ÷ 3 = 20 scores no marks
		P1	for a start of a process to find the value of <i>n</i> , eg. ("20": "10") + 5 or 20: 10 = 10: 5 or "20" + "10"	Any ratio must come from correct processes to find the number of children and the number of men
		A1	for 2 with supportive working	Award 0 marks for 2 with no correct supportive working
				Award full marks for 2 : 1 given as a final answer from correct supportive working

	No	P1	for 3000 ÷ (2 + 3) (= 600)	-
17	2.0		2 2, (333,	
	(supported)	P1	for "600" × 2 (= 1200) or "600" × 3 (= 1800) or "600" + 6 (= 100) or "600" + 20 (= 30)	
		P1	for "1200" + 6 (= 200) or "1800" + 20 (= 90) or "100" × 2 (= 200) or "30" × 3 (= 90)	
		P1	for "90" + ("200" + "90") × 100 (= 31.0) oe or "90" + ("200" + "90") (= 0.31) or 0.3 × ("200" + "90") (= 87)oe	Full method to compare
		C1	correct conclusion and fully correct calculations with accurate figure eg No and 87 or No and 31% or No and 0.31	No working, answer only no marks No may be implied by a statement
-	33	P1	for relating 24 to 8 parts or (1 part =) 24 ÷ 8 (= 3)	8 parts = 24
18			or for 15 – 7 (= 8)	
			or starts to use a build-up method, eg (8:) 14:30	
		P1	for 15 – 4 (= 11) and 24 ÷ 8 (= 3)	
			or $15 \times 3 = 45$) and $4 \times 3 = 12$)	
			or for 12 (: 21) : 45	